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A SUPERRESOLUTION METHOD
OF ARMA SPECTRAL ESTIMATION*

James A. Cadzow and Randolph L. Moses

Dept. of Electrical Engineering
Virginia Polytechnic Instituce and State University
Blacksburg, VA 24061

ABSTRACT

Recently, a method for generating an ARMA
spectral estimator model which possessed super-
resolution performance was developed [2]. This
method entailed minimizing a weighted quadratic
functional of a set of "basic error terms." An
issue which remained to be resolved at that time
was the selection of the weighting matrix that
characterized the functional being minimized. A
weighting matrix selection procedurs has recently
been developed and is herein reported [ 8]. This
orocedure has typically yielded an improvement in
spectral estimacion performance.

I. INTRODUCTION

In this paper we shall be concerned with the
task of estimating the power spectral density of a
zZero mean, wide sense stationary random time series
{x(n)} from a finite set of observations. To this
end, knowledge of the time series' underlying auto=
correlation sequence as formally defined by

r (n) = E{x(a+k) x*(k)} ¢))

conveys all the informacion required. Hare, E{ }
denotes the expected value operators and * denotes
the operation of complex conjugacion. The time
series is characcterized in the frequency domain by
its power spectral density as given bHv

S = 7 or (e R )

NWex

which i8 recognized as being the Fourier transform
of the autocorrelation sequence.

Cpon examinacion of (1) and (2) it is apparent
that determination of the time series power spectral
densicty antails complete knowledge of the
generally infinite length autocorrelation sequence.
Here, we will be concerned with extracting this

information from che finite set of time series
observations

<(1), x(2), ..., x(N) . (3

*
This work was supported in part bv the Office of
Naval Researcnh under Contract N00014-30-C=0303.

Uanless some constraints are imposed on the
time series’' basic nature, however, there exists
a fundamencal incompatibility in escimating the
required statistical knowledge from the finite set
of data. This dilemma is usually resolved by
postulating a finite parameter linear model to
represent the time series. In terms of parameter
parsimony, the causal autoregressive moving average
(ARMA) model of order (p,q) as specified by

P q
x(n) + | a;x(n=1) = ] bye(a=1) (4)
j=0

i=]

is generally the most 2ffective linear model [1].
In this model, the (unobserved) axcitacion process
{e(a)} is assumed to be zero-mean, unit variance
Gaussian white noise. It is importanc to note that
the more specialized autoregressive model

(i.e., bj 2 0 for j ¥ 0) generally requires a much
higher model order p to achieve comparable
spectral estimactes. Conceptually, chen, che more
general ARMA model {s the logical model choice.

It is well known that the power spectral den-
sity of a process{x(n)}that satisiies (4) is given
by: 2

- 1B(u2f

|l+aﬂﬁ“+“.+afq“ﬂz Al ]2 (3)

(B3

|bo +b1e-j“+ ... +bqe-jq“;

S (w) =

Thus the task of estimating the power spectral
density of cthe time series can be accomplished by
estimating the ARMA model parameters aj and bj.

Several procedures for estimating the aj and
by parameters have recently been developed [2-8].
Of these procedures, one developed by Cadzow {2
has been shown to be effective in a variety of
cases. The crux of this procedure lies in obtain-
ing the autoregressive parameters by minimizing a
weighted quadratic function of a set of zero mean
error elemencs. It was pointed out in [2] that the
effectiveness of this procedure is dependent on a
judicious selection of the weighting elemencs in
the quadratic function. This paper deveiops an
alternative weighting element selection to that
used in [2] which resulcs {n improved spectral
ascimates.
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II. THE MODEL EQUATION ERROR
SPECTRAL ESTIMATOR.

The spectral estimation procedure of this
paper is predicated on the procedure in [2]. For
completeness, this procedure is discussed below.

Of primary importance in spectral estimacion
i{s the method for astimating the autoregressive co-
efficients ay in equacion (4). An effective mathod
for estimating these coefficients entails multiply-
ing both sides of (4) by the tarm x*(n-m) to yield
the "bagic error terms"

e(m,n) = x(a)x*(n=m) + | a ;x(n-1)x"(n-m) (6a)
=1

3 *
- E bjs(n-j)x (n-m)
i=0

for q+l <m< N-1
max(p+l,mtl) <n <N
(6b)

where the range on the m and n variables is diccac-
2d by -the time series observation range 1<k <N.

If the time series is in fact an ARMA process of
order less than or equal to (p,q) then the basic
2rrOor terms are each zaro mean random variables.
furthermore, the basic error terms are seen to be
functions of the autoregressive coefficients

a1, az, ..., ap. With chese two properties in mind,
3 reasonable selection of the autoregressive co-
efficients is one that causes each of the e(m,n)
terms to be as close to its mean value of zero as
pogsible. This goal is achieved by minimizing a
squared-error criterion of the form

£(a) = ¢ Ve n

where ¢ 18 a vector of appropriately arranged
2(m,n) terms, W is a positive semidefinite weight-
ing macrix, and ~ denotes the operation of complex
conjugace transposition.

A more specific format of the minimization
cricerion (7), and the one considered in [2], is

5-1 Dy 2

iay = . w(m)i _‘T_e(m.n):

a : s » max(p+l,m+l)
neq+l a=g

(8)

In chis expression the w(m) are nonnegative
weighting elements.

Using standard calculus, it i{s readily shown
that the set of autoregressive coefficients which
minimize (8) are given by:

i=C ¢ (9
where . a = [al ay ... ap]r (10a)
C*Ce'pep (10b)
= -[cm Cag veo “:-,:0‘1 (10¢)

and
N=1

%k ®

Y N * *
I I w@x@-k)x(t-m)x (a-a)x (1-1)
neq+l heg i=s

i,k=1,2,...,p
8 = max(mrel,o+l) (10d)

An improvement in the above autoregressive co=-
efficient estimation procedure can be realized by
also considering the backward version of che time
series {x(n)}. Also, an estimate of the numeracor
spectrum B(w) in (5) must be obtained in order to
arrive at the complete power spectral density esti-
mate of {x(n)}. The details of these two tasks are
presented in [2].

III. WEIGHTING ELEMENT SELECTION

In order to obtain autoregressive parameters
using the above procedure, the elements w(m) in (8)
must first be selected. In [2] the weights

w(m) = (N-m)!' q+l < m < N-1 (11)

were employed.

A more prudent weight selection can be
developed by considering the random terms

| § 2

i ! em,n) qtl < @ < N-1 (12)

a=s

associated with the weights w(m) in (8) [8]. A
logical selection for the w(m) weights is the
inverse of the variances of the terms in (12),
that is

I3

J N Pl
w(m) = {var| | I e(m,n)| | q*l < m < N=1 (1)

n=s b

<)

In this way, the terms in the minimization criter-
ion (8) which have smaller variances from their
mean value are weighted proportionately higher than
those terms with larger variances from their mean.

It is easily shown that

¥ 7 39
var|| ) e(m.n)l = 2 7 r (=n) e(ien) (13a)
'nes ', aes lag
s = max(m+l,p+l)
{
where | 9-m .
P bd 0<m=<«q
} g .
c(m) -\i *Cal) , -l :m>-q {14b)
0 . otherwise
1
L

a

- T f?h .

B



Unfortunately, the desired variances are seen
to be dependaent on the unknown parameters
bo, by, ..., bq. However, an approximate express-
ion for the inverse variance weights of (13) can
be realized if a reasonable approximacion of the
c(m) elements in (1l4b) can be found.

One can gain insight about the structure of
the c¢(m) elements by forming the polynomials B(z)
and C(z) defined as

ap_ q-1
B(2) boz +blz +... +b r.<'-bq (15a)

q=-1
C(z2) sc(=qQ)z F+e(-q#l)z~ L4 . +c(0) +c(l)z

+... -M:(q)z‘:l

(15b)
It {3 easily shown that
C(z) = B(2)B(z™D) (16)
Furthermore, B(z) can be factored as
B(z) = b, g(z-si) an

isl

where the 34y are zeroes of the polynomial B(z).
Applying (16) it is found that

<9
) s bz d (z-3)1-28) (18)
t=1

Thus, C(z) can be found (to within the comstant b&)
using (18) from knowledge of the q zaroces
34 of B(2).

A reasonable approximacion of C(z) and there-
fore of the c(m) elements can be found by
approximacing the location of the zeroes of B(z).
One such approximation is realized by assuming that
each zero is a random variabla uniformly discribuc-
ed wichin the complex uait circle,* so that its
orobability density function is
R TS| (19)

1 T = 1=1,2,...,9
.9 , ocherwise

N

If the time series {x(n)} is a real process,
then the zeroes of B(2) must form complex conjugate
pairs. For this case it is assumed thact 3/2 of the
zeroes are uniformly discribuced wichin the upper
half of cthe complex unit circle, that is

'31, <1l and Im{3;] > 0 (20a)
otherwise

:. \5-)
PR § !

bS {
'

<,
0

i=l.3,....q9=1

“1f{ a zero of B(z) is outside the unit circle, then

e corresponding zero of B(z~l) is inside che unit
rcie, and from aquation (1) it {s clear thac
z2) will not bYe affected.

I
3
N
c

4
R
2
v

8 1=2,4,6, ..., q (20b)

*
1" 849
where Im[84] denotes the imaginary part of 24.

If q 1s odd the unpaired zero is assumed to be

uniformly discributed on the real axis inside the
unit circle,

1
2 ’
0 , otherwise

sl <1 {3 ] =0 (20c)

fgq(ﬂq) -

Using these assumptions about the zeroes of
B(2), one can scraightforwardly calculace the
desired approximation to C(z2) by determining the
expected value of expression (18)

q
8(z) = E(z™Y 1 (2-8,)(1-28))} (21
i=0

By carrying out this calculation, one finds that
for a complex time series {x(n)!}

C(2) =1 (22a)
and for a treal time series
k
ér(z) .20 [% 2* +-% 22 - %} (22b)
J
where
q
, q even
ke Z
SE-' q odd

Thus, the approximate inverse variance weights are
given by

N N . -1
w(m) = | § 7§ rx(l-n)c(:.-n)’ q*l < @ < N-1
nws iss !
- ~ =}

where s = max(m+l,p+l) and the ¢(m) elements are
the coefficients corresponding to the 23 terms of
the polynomials (22a) or (22b).

IV. NUMERICAL EXAMPLE

In order to compare the effectiveness of the
new ARMA spectral escimacor with che estimator
in (2], the classical problem of rasolving
two closely spaced (in frequency) sinusoids {n
white noise will be considered. Specifically, che
time saries under scudy is specified by

x(n) » v20 cos(0.4mn) + 17 cos(0.426mn) +w(a) 24)

where {w(n)} {3 a white Gaussian noise process of
Zero mean and unit variance. The sinusoids of
normalized frequencies 0.4 and 0.426 are readily
calculated to have signai-to-noise ratios (SNR) of
10dB and 0dB, respectively. A sequence of length
512 defined over 0 < a < 511 was anext generated
uging this relationship. Furthermore, in order co
provide a stacistical basis for our comparison,
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this 512 length sequence was then decomposad into
eight disjoint sequences each of length 64 defined
on0<n< 63, 66 <nc< 127, ..., 448 < n < 511,
An ensemble consisting of eight subsequences each
of length 64 has thereby been generated with each
subsequence having a different noise sample and a
differeant initial phase betwsen the two sinusoids.
This latter condition is useful in revealing any
pocential seasicivicy to initial phase cthat che
new ARMA spectral estimation method may possess.

The spectral estimates which resulted when
the (N-m)% weights and the nev iaverse variance
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[8] Moses, R. L., "An [terative Algorithm for

ARMA Spectral Estimation,' Master's Thesis,
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weights were applied to the ARMA spectral estima-
tor are displayed in Figures la and lb, respective-
ly. The ordinates are scaled from -20dB to 60dB for
each individual plot. In both cases the spectral
estimator order was (15,15). It is clear that the
inverse variance weight estimator was able to
resolve the two sinusoids in more cases than the
(N-m)% weight estimator could. Moreover, the
incidence of false peaks in the inverse variance
weight estimates is smaller than that of the

(Nem)¢ weight esctimates.

Ao 27y, CONCLUSIONS —/L_//Vb\/;

An improved weight selection for a recently
developed ARMA spectral estimation procedure was
developad.®The autoregressive parameters are
found in this procedure by minimizing a weighted
sum of squares of zero mean basic error terms.

The new weight selection is chosen to provide more
heavy weighting to those terms in the sum which
possess lower variances. Empirical evidence
indicaces that this new weight selection provides

superior spectral estimacion performance when com- 0.00 g.20 0.40 0.60 0.40
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